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Abstract. Determining the optimal placement of stores, factories, and
other industrial facilities has long been the topic of much scrutiny through-
out the computer science and operations research communities. Indeed,
this topic has been studied thoroughly under the name of the facility
location problem. Yet, when profit is not a driving factor, there is little
incentive to scrutinize these placements, which can often involve a costly
process of modeling and optimizing over large datasets. As the COVID-
19 pandemic rages on, we see the opportunity to leverage past research
in this space for the public good.

In this paper, we make two novel contributions. The first is that we
put forth and implement a weighted k-median algorithm. This algorithm
efficiently approximates the position of k clusters in order to minimize
the weighted sum of distances to the nearest center for all points in a
population. The second contribution is that we apply this model to in-
form vaccine clinic placement in the greater St. Louis area. Our work is
broadly applicable to any population and comes at a time when vacci-
nation rates are insufficiently low and the rate of contagion is high.

Keywords: Facility location problem · Weighted k-median · Vaccina-
tion clinic optimization

1 Introduction

The novel coronavirus SARS-CoV-2 - known as COVID-19 - has had sweeping
effects across the globe, infecting over 270 million people and resulting in over
5 million deaths, at the time of writing this paper. COVID-19 vaccines have
been shown to be safe and effective; guarding against getting the disease as well
as developing serious symptoms from it. High levels of vaccination as a society
will also protect against both the creation of and sickness from variants like the
recently discovered Omicron substrain. As in other contexts - flu, malaria, etc -
we know that a decreased distance to vaccination clinics is anecdotally linked to
increased vaccination rates. This is evidenced, albeit on a more micro-scale, by
the work of Beshears et al. Mass vaccination sites in particular have been shown
to be useful in this regard (Goralnick et al., 2021).
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Vaccinating as many people as possible is undoubtedly a tricky problem, but
the same holds with this as for other things out of a person’s ordinary day. Vot-
ing, going to the doctor’s, and getting a car checkup are all similar activities
that take time and are in potentially inaccessible or far away locations; hence
why some persons do not do not partake regularly or at all. By removing this
limitation and having vaccination sites as close by to as many people as possible,
we can alleviate this particular concern and continue to increase vaccine uptake.

An optimal placement of clinics, thus, should be our lodestar as we continue
to work to get out of the pandemic. This optimal placement is driven mainly by
population density statistics. By placing more clinics where there are the highest
concentrations of people invariably leads to more vaccinations; but it is not as
simple as pointing to dots on a map. Dealing with great distances, different sizes
of population centers, and dealing with sparsely populated areas are all problems
that we need to address in this work. We take the area of St. Louis City and
surrounding regions as our location to focus on; noting both our (the authors)
significant connection to the area as well as the low vaccination rates (roughly
50-60 percent) therein. Clearly, there is an opportunity both here and worldwide
to achieve meaningful change, and we hope to present a way of doing so.

We theorize that this will lead to increased vaccination uptake, saving lives and
improving countless others’ physical and economic welfare. We look to solve a
model to inform vaccination clinic placement, as the COVID-19 pandemic con-
tinues to rage on as well as for any potential future outbreaks of similar diseases.
Our model is broadly applicable to vaccination clinic placement as a whole and
can be used as an allegory to the greater facility location problem, which has
numerous real-world applications.

2 Related work

Previous work in this area centers around two key points – firstly, the relation-
ship between COVID-19 cases and population density; and secondly, previous
work regarding so-called k-median algorithms (with median referring specifically
to L1-median, though notation differs from source to source). We present this
information to provide a clear and holistic picture of the background and ratio-
nale behind our work.

We first discuss a detailed study from Brazil, where case counts of SARS-CoV-2
have reached unprecedented highs over a sustained period of time (in the con-
text of this study, the time period ending January 2021). Both anecdotally and
empirically, Brazil has struggled to contain the spread of the coronavirus, which
unfortunately gives plenty of data to work with in this regard. Martins-Filho
et al. (2021) present an analysis of the relationship between overall population
density and incidence of COVID-19. They first noted that the disease has had an
outsize effect in urban and highly dense areas as well as among more vulnerable
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populations. Their area of focus was a subsection of northeast Brazil - Sergipe
state. The researchers noted that there was a positive correlation both between
population density and COVID case incidence as well as mortality rates. The
graphs follow here (on a natural log scale). Ganasegeran et al. (2021) found sim-

Fig. 1: MDP Portfolio Convergence (Momentum).

ilar results in a large study based on data drawn from Malaysia. More relevant
to our specific case can be found in the findings of Smith et al. (2021). The latter
found that - outside of lockdowns and the subsequent reduction in individuals’
mobility - population density along with temperatures were found to be well
correlated with increased transmission of coronavirus cases. This analysis uti-
lized comparative regression and ‘integrative epidemiological modeling’ to come
to their conclusions. Their findings included the effects of lockdowns as well,
so that the R0 rate (R0 is defined as the transmission rate, in this case in the
specific context of COVID-19) can be accurately tracked across different periods
of time; and is shown to correlate to ’expected’ findings. Specifically, that the
R0 rate drops during lockdowns as people spend less time interacting with each
other (and by that logic, less time spreading the virus to each other).

The second key area is previous work on k-median algorithms as well as the
facility location problem. We drew primarily from papers discussing these top-
ics. Arya, Meyerson, Pandit et al. (2001) analyzed search heuristics for k -medial
and facility location problems, defining a locality gap as a maximum ratio of (1)
some local minimum solution to (2) the global optima. They derive exact values
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for this locality gap for different scenarios – local search with facility swapping,
and both capacitated and uncapacitated facility problems (where a location ei-
ther has finite or infinite capacity). This paper served as an excellent background
and grounder for us on the mathematical side of things.

Vardi and Zhang (1999) focused more on deriving the L1-median of a specific
data cloud itself. (We note that the L1 median is defined to be a point which min-
imizes the sum of Euclidean distances to any specific point in a given dataset).
Their work yielded a monotonically converging algorithm that resulted in the
L1-median; as well as defining depth functions to a greater degree. They derived
a modification of the Weiszfeld iterative algorithm - that allows for computation
of the multivariate L1 median. This algorithm serves as an excellent grounder for
our specific problem and allowed us to have a solid reference frame for creating
our algorithm.

3 Data

3.1 Data Source

For this research, the data source used was the “United States High Resolution
Population Density Map” from Data for Good at Meta. The data source consists
of six separate .csv spreadsheets named “population usa.part n of 6”, where each
row of data in each spreadsheet consists of 3 columns that provide information
on latitude, longitude, and population respectively. Each row corresponds to
a point in the United States that is representative of a 30x30 meter grid and
provides population density information on that grid. Each spreadsheet consists
of over 31 million data points, and in total contains 191 million data points with
population density information. According to the owners, the data is sourced
using machine learning image processing technology that scans commercially
available satellite imagery to identify buildings. Once those locations are flagged,
population estimates are then generated by researchers at Columbia University
based on available population statistics and US census data.

3.2 Refining Geographical Search Space

The initial research plan was to investigate what the most optimal locations
to place COVID vaccination clinics were across the entirety of the continen-
tal United States based on population densities. However, given the volume of
data points, the area of interest was reduced to the state of Missouri. When
reducing the search space to Missouri, we developed a bounding box that fully
encompassed all boundaries of the state. When filtering the dataset based on
the bounding latitudinal and longitudinal points, the dataset was reduced to 9
million data points. Furthermore, the bounding box was rectangular in shape
and was formed using the most extreme points in Missouri’s state boundary,
not in terms of the shape of the state itself which resulted in an inclusion of
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points in other neighboring states like Illinois and Kansas. We then narrowed
our search space down to the greater metropolitan area of St. Louis. We manually
determined a bounding region and determined the bounding geographical coor-
dinates. After filtering the six datasets, the dataset was left with about 670,000
points. We further removed the 70,000 data points with population densities
weighted at zero resulting in 600,000 data points. Data cleaning and processing
was done in Python3 using the Pandas data analysis library. Each spreadsheet
was downloaded and iteratively filtered. Using the bounding latitude and longi-
tude coordinate values, each dataset was filtered down to only consist of points
within the specified ranges. Each subsequent data frame was then merged to
create a singular dataset that contained all the data points for the areas within
the boundary we specified around the Greater St. Louis Metropolitan Area. This
same approach was applied using coordinates that bounded the state of Missouri.

3.3 Coordinate Conversion Methodology

In order to run our algorithm, the bounding box we placed around St. Louis
needed its coordinates converted into a standardized metric. While viewing an
image of St. Louis on a map may look two-dimensional, the nature of the Earth’s
shape results in a difference in units based on the latitudinal and longitudinal
axes. A methodology of approximating the distance between two points on the
globe is given by the Haversine equation. We applied the Haversine formula
on the coordinates that bound the St. Louis region to determine the distance
in kilometers between each of the four points that bound the region. Next, we
set the bottom-left point of the region to (0,0) and converted each coordinate
to a point that falls within the boundary in kilometers. We approximated the
longitudinal distance to be 57.866 kilometers. In a larger region, however, the
horizontal edge of the boundary that is closer to the equator will have a larger
width than the horizontal edge further away from the equator.

4 Model

4.1 Objective Function

At the core of our model, we try to minimize our objective function. This function
is the weighted Euclidean distance of n points in a dataset to the nearest k cluster
center. We refer to the set of points in the population as P and the set of clusters
as C, where each point is a tuple consisting of a x and a y value. Each point in
the population is assigned some weight, wj .We treat the points in the population
as fixed, whereas the points in C are variable. We refer to the set of points which
have center i as their nearest center as Pi where Pi ⊆ P . From these notations,
we arrive at our formal definition of our objective function, Weighted Distances
To Nearest Cluster (WDTNC), below.

WDTNC(C) =
∑
i∈C

∑
j∈Pi

wj

√
(xi − xj)2 + (yi − yj)2 (1)
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To minimize this function, we search along x and y values for all k points in
C. At first, this function seems relatively easy to minimize. We search along
these 2 dimensions, x and y for each of k points, making for a total search
space in IR2k. Moreover, these values are bound to the range of values in P ,
narrowing the search space. Unfortunately, perturbations to values in C change
cluster assignments for points in P making this objective function discontinuous.
Because of this, gradient-based approaches are infeasible, where computing an
exact solution becomes intractable as k grows. To solve this, then, we turn to
an iterative approach.

4.2 The Weighted k-Medians Algorithm

The weighted k-medians algorithm looks to minimize the objective function laid
out above, WDTNC. It is partly based on the weighted k-means algorithm, but
where this algorithm uses the weighted centroid of a population to assign clus-
ters, we use a weighted geometric median. The former is much more trivially
calculated than the latter, as the weighted centroid is simply the mean value
across all dimensions of the weighted population. At a slightly more intuitive
level, it is worth noting that the centroid minimizes the sum of squared dis-
tances from a center to all points, while the geometric median minimizes the
Euclidean distance, which is of greatest concern to our application in vaccine
clinic placement.

We also build off of the k-medians algorithm, a lesser-known cousin to k-
means. The key difference here is, as laid out before, the use of a geometric
median as opposed to a centroid of a set of points. Yet, every point in our data
does not represent one individual in the population. As discussed in section 3,
each point is given a population density value, corresponding to the number
of residents in a given 30 meter by 30 meter tile. It is necessary to include
this weight as not doing so would wildly skew our results towards rural areas.
Moreover, if we hope to incorporate further weighting based on some function of
population density, as laid out in section 2, an algorithm that includes weights
is even more pertinent.

Surprisingly, to our knowledge, no weighted k-median algorithm exists pub-
licly. Because of this, we sought to create our own algorithm in order to min-
imize our objective function. In words, this procedure follows an Expectation-
Maximization approach. We iteratively fix the assignments of points in a popu-
lation to the nearest center. Then, we recompute centers based on the weighted
geometric median of the subset of the population assigned to each cluster. This
process converges once assignments do not change between successive iterations.
The pseudo-code for this algorithm is laid out below. Here, w refers to the list of
weights for each point in the population and k is the number of centers. Note, X
refers to the fixed population, instead of P as used above, for consistency with
programming conventions.

The getAssignments() Function The formulation of this function is rela-
tively straightforward. For this function, we calculate the distance matrix from
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Algorithm 1 Weighted k-Medians

1: procedure getWeightedKMedians(X, k, w)
2: medians← randomChoices(X)
3: assignments← getAssignments(X,medians)
4: while ! convergence do
5: assignmentsOld← assignments
6: assignments← getAssignments(X,medians)
7: medians← getResults(data,weights)
8: if assigmentsOld = assignments then
9: convergence← true
10: else
11: oldResults← results
12: end if
13: end while
14: return medians
15: end procedure

points in medians to points in X. This leaves us with a n x k matrix of distances,
where each row corresponds to a point in the population and each column corre-
sponds to a given center. The value of each cell is the Euclidean distance from a
given point in the population to a given center. From this, we take the argmin
for all rows to ultimately return a list of length n, where each value is in the
domain [1, k], corresponding to the point’s assignment.

The getWeights() Function This function leverages recent work done by
Vardi and Zhang to quickly compute the weighted geometric median of a set of
points. As this formulation is fairly technical, we have omitted the formula for
the sake of brevity. We compute this point for each center, i, in 1...k subsets of
the population, with each subset being the points in the population nearest to
center i.

4.3 Weighted k-Medians for Vaccine Clinic Placement

We now tie our algorithm formulation back into the context of our original
problem. We use the weighted k-medians algorithm to minimize our objective
function, WDTNC. In a simple model, we still have to assign weights to each
point, as a point is representative of a tile of people, with potentially multiple
people living in each tile. By assigning a simple weight of population density, we
capture this and create a model that minimizes the distance to all people in the
population, not just all points in the dataset.

In our more sophisticated model to mitigate virus spread, we choose weights
via a different method. To select our weights, we tie in domain knowledge of how
epidemics spread. From section 2, we see that contagion rate is proportional to
population density. So, in order to minimize contagion rate by lowering barriers
to vaccination, we want to assign extra weight to higher density areas. For this
we choose population density2 to be the weight for each tile.
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5 Results and Evaluation

In the evaluation of our model, we plot against the greater St. Louis area popu-
lation. In lieu of having a strong alternative to act as a benchmark for our model,
we demonstrate visually how our model performs. To begin our analysis, we look
at an elbow plot of the average distance to the nearest clinic against the number
of clinics placed. From this, we surmise the most cost-effective number of clinics.
This elbow plot is show in Figure 2. From this figure, we see that the average

Fig. 2: Elbow plot of distance to nearest center for k center numbers

distance to the nearest clinic starts to flatline at a k value of roughly 25. Assum-
ing that there is a constant cost to creating vaccination clinics we choose this
value as it promises to roughly minimize distance per spend on clinic creation.
The optimal k value could be subject to more scrutiny in the future, but for the
scope of this model, we suffice with these grounds. In Figure 3 we see the optimal
solution from our weighted k-medians weighted only by population density. In
this and subsequent figures, red dots are points in the dataset, with color inten-
sity corresponding to population density (more red implies higher density). Blue
dots correspond to clinic locations determined by our algorithm. This results in
an average distance to the nearest center of 2.68km across the whole popula-
tion of just under 1.5 million people. Again, this weighting effectively makes our
solver treat this problem as an unweighted optimization to all individuals in the
population. But, because our data is clustered into tiles and given a population
density per tile, we incorporate this density as an initial weight.

We then contrast this figure with Figure 4 which further weights each point
by another factor of population density, to make the weighting population den-
sity2. This slightly biases centers towards higher population areas. While the
differences are only slight, we see fewer centers placed in the East St. Louis area
(roughly x > 40), which is known to be less dense than locations west of the
Mississippi River (the white stripe undulating vertically at around x = 40). The
St. Charles area (top left, north of the Missouri River), looks nearly identical
between graphs, while the downtown St. Louis area (high density area in the
center) receives a couple more clinics.
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Fig. 3: k-medians weighted by population, k = 25

Fig. 4: k-medians weighted by population density2, k = 25

We then scale up our weighted model to k = 100. This is more consistent with
the magnitude of clinics currently in the region, which, according to KMOV4,
sits at around 350. Because 350 clinics would be cumbersome to visualize, we
prune this down to an even 100 clinics. In Figure 5, we see that it does accurately
cluster around dense areas. which is promising to demonstrate a realistic scale
of optimal clinic placement.
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Fig. 5: k-medians weighted by population density2, k = 100

6 Discussion

Through this paper we successfully optimize vaccination clinic placements in
the greater St. Louis region. We first propose a model for a weighted k-medians
algorithm to solve the challenging problem of minimizing distances for weighted
points in a population to a nearest center. We then apply this model to vaccine
clinic placement, selecting weights informed by domain knowledge of how viruses
spread. For data, we refine our dataset to the St. Louis area, and then transform
it from geographic coordinates to a metric-unit approximation. We then combine
these into an encompassing model for optimizing vaccination clinic placement.
While our research was specific to COVID vaccination clinics, its applications
can be extended to other problems that involve optimally placing infrastructure
in areas based on regional population density and other kinds of constraints.

Recommendations for Future Work Our research is adaptable and can be
expanded upon in a few different ways. Firstly, from an implementation stand-
point, work can be done to optimize distances given monetary budget constraints
instead of a k value. This could incorporate geographic variations in costs to
implement clinics. Secondly, further research may consider constraints on this
optimization, such as vaccination rate caps or total supply caps. Additionally,
subsequent projects should analyze this problem using different solvers. While
we developed our own solver, there may be other solvers and algorithms that
could be applied to this objective function. Further research would use these
solvers and compare the results to those of our own.

Finally, as stated above, our methodology can easily be applied to other ar-
eas in the United States, be they cities, towns, counties, or even states. Further
research in other regions can also use a scientific approach to determining the
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appropriate bounding coordinates and regions for the area of interest. This also
pertains to weighting. While our model assumes a somewhat naive relation be-
tween population density and contagion rate, this assumption may break down
on the micro level due to the high mobility of populations within the search space.
Epidemiological research on the true contagion rate at different geographic scales
could help inform this weighting system.

7 Division of labor

Connor Douglas Connor was responsible for the algorithm design and imple-
mentation along with empirical testing. His sections were Model and Results and
Evaluation.

Aditya Krishnamachar Aditya dealt with much of the background reading on
this subject and the motivation for certain approaches we take. Aditya’s primary
sections were Introduction, Related Work, and References.

Vishesh Patel Vishesh was the team’s data engineer. He found our dataset and
was in charge of verifying its accuracy, refining the geographic range of data, and
transforming the data. In writing, he worked on Data and Discussion.
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