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Abstract

Label aggregation is an integral part of crowdsourcing
activities. Typical label based aggregation models, such
as Expectation-Maximization (EM) or Singular Value
Decomposition (SVD), attempt to capture a worker’s
true ability, assigning each worker a weight based on the
proportion of labels they correctly assign. These models
assume static worker abilities, and are effective predic-
tors in such cases, however in some situations, this as-
sumption does not hold. Indeed, worker abilities are of-
ten dynamic, with true worker accuracy changing over
time. In these situations, algorithms that assume static
worker ability do not create the most accurate model of
worker abilities. We present a new model, Label TAG,
for capturing crowdsourcing workers’ dynamic learning
ability in binary label settings. We show the theoreti-
cal mathematical validation of our model, as well as an
empirical validation over synthetic datasets, and present
our results. We find that TAG outperforms the classical
EM model in most cases of dynamic ability and is ro-
bust against non-learning. We also discuss next steps for
the model, including how to optimize the model in situ-
ations of unknown ability.

Introduction
Data is at the foundation of modern society, with machine
learning algorithms acting as the backbone of nearly all tech-
nological processes today. Disparate industries are increas-
ingly leveraging the predictive power of machine learning
to augment processes and make them more efficient. Cen-
tral to this change is the use of supervised machine learn-
ing, and in particular classification algorithms, which train
models on known, labeled data and then attempt to classify
labels on unseen instances in a similar way. By this process,
these models are only as strong as the data they are trained
on. The quality of data here is essential, yet establishing the
ground truth of instances is a non-trivial problem. To ad-
dress this, humans are used to establish the ground truth of
instances. In order to achieve labelling en masse, we turn to
crowdsourcing, a way of employing many online workers to
perform simple labeling tasks.

Crowdsourcing has become a fairly standard, cost-
effective method of labeling massive datasets, where peo-
ple unknown to the requester manually label images, text, or

other mediums with the desired (ideally, the correct) label.
This process, outsourcing tasks to these workers, has drasti-
cally risen in popularity over time. It has become an integral
part of a great variety of tasks that require large amounts of
hand-labeled information.

Within this ever-growing field sits the central plank of
label aggregation. The process of accumulating all the
disparate labels, processing the labels, and understanding
worker abilities all sit under the catch-all term that is la-
bel aggregation. Nearly all previous work in this area as-
sumes that all worker abilities are constant and unchanging
throughout the duration of their disparate labeling processes.
Thus, even if a worker improved dramatically; say from an
accuracy of 0.50 from t ∈ [0, 25) to 1.00 from t ∈ [25, 50),
this methodology would assign them an average ability of
0.75 over all 50 timesteps.

This approach, assuming that workers have static and un-
changing abilities throughout the entire cycle, in some sense
glances over this crucial step in label aggregation. Typical
aggregation methods assign weights to workers based upon
their accuracy. But if their accuracy is assumed to be con-
stant over the entire time period, this could lead to damag-
ing estimations of labeling. Take our previous example of
a worker improving dramatically across 50 time steps, for
example. If they were among the highest worker accuracies
across the entire labeling set, it is likely their labels would
have an outsize weighting, given their higher accuracy. But
for t ∈ [0, 25), their labeling performs extremely poorly, at
no better than a random guess! This method of worker accu-
racy labeling is thus in need of a robust upgrade.

Related Work
Previous work in this area has mainly been in the context
of predicting or understanding more about worker accuracy
and reliability. This, once again, is generally in the context
of one average metric that captures this ’reliability’, and not
at different time steps.

Qiu et al. (2018), however, proposed a model that is sub-
stantially more dynamic - making use of gold standard eval-
uation and peer consistency evaluation methods to track
and update worker performance. The researchers adjusted
the proportion of these two methods based on an estimated
distribution of overall worker behavior - essentially, where
workers swung from acting reliable to performing malicious



behavior. They place specific emphasis on this adversarial
activity, as it has become more frequent and relevant in the
context of label collection. They used Mechanical Turk to
source worker data and methodology. The approach specifi-
cally focuses on “improving workers’ quality control on the-
fly” [2]. Their model dynamically adjusts to take into ac-
count the gold evaluations performed (in the midst of the
other assigned tasks); and showed, using the Mechanical
Turk platform for worker data, that this approach does better
than other comparable methods to track worker reliability.

In the context of improving worker output, and finding
ways by which to measure the increase in this output, we
investigated an approach that attempts to constructively im-
prove worker accuracy on a rolling basis (throughout the
tasks they are asked to complete). The researchers, Drapeau
et al (2016), presented an algorithm that required workers
to either (1) justify a choice they made or (2) reconsider a
decision after reading discussions advocating for the oppo-
site choice, written by a fellow worker. This attempt to get
workers to rethink or show critical understanding of their
choices appeared to be successful. The authors showed that
this argumentation improves worker accuracy by 20 percent
(study performed on the Mechanical Turk crowdsourcing
platform); and this workflow appears to outperform simple
majority voting in every scenario. We note that this model
definitively shows that workers are able to improve their per-
formance over a period of time, when placed in the right en-
vironment or given the correct stimuli.

This approach is critical to our methodology, as our model
also involves performing calculations at each time step for
the worker data. Additionally, we could, for example, use
the results of this paper to measure differences in workers’
reliability over a long period of time. Assuming that the ob-
served data lines up with our expected findings that labeling
accuracies + reliability increases over time , we could then
refine our proposed model (a temporal weighting of worker
accuracy) to be consistent with these observed trends.

The majority of work in the field treats individual workers
as independent and identically distributed random variables
(i.i.d). However, a new model was proposed by Jung et al.
(2014). They created a time-series label prediction model for
crowdsourcing work, with the overall goal of improving the
quality of labeling. It takes into account workers’ so-called
’accuracy patterns’ (a gradual increase in accuracy or a sharp
dropoff in performance would be two examples).

In the same sub-area as our proposed work is research
done by Hata et al. (2016). Their findings were actually
counter to our modeling - observing that worker quality is
stable over a long period of time. The tasks they tested, how-
ever, were quite simple ones: image descriptions, question-
answer pairings, and binary verification. We understand that
this is a significant body of work, but also note that the tasks
are primarily simplistic ones.

Domnez et al. (2010) proposed a methodology for han-
dling temporal differences in labeling accuracy and overall
reliability for multiple workers. Their model has a Sequen-
tial Bayesian Estimation framework in order to perform two
tasks. First, learn a worker’s expected accuracy at a time step
t; and second, to evaluate which workers to survey for a la-

bel. In brief, the model they present estimates the expected
worker accuracy at each time step, performing sequential
Bayes updates for every t. The researchers’ analysis demon-
strated that their method far outperforms a simple major-
ity voting algorithm (majority voting takes into account all
worker inputs (+1, -1) per timestep and takes the sum to pre-
dict the correct label). Two key assumptions that the authors
made in this analysis was that (a) the rate of change of a
worker’s learning ability (or at least the bound of this rate of
change) was known and (b) this rate of change was the same
for every labeler. We take (a) to be true in our analysis, but
we do not require that this be known when implementing our
algorithm, noting that a person’s learning ability can be es-
timated by linear, logarithmic, or similar functions. We also
note that a person’s learning ability is certain to be bounded
by some number (they cannot learn at an infinite rate!), so
we are confident that making the same assumption as Dom-
nez, et al. will result in reliable and trustworthy results. This
is explained in detail in the following analysis.

Model
The Label TAG model follows the expectation-
maximization framework, iteratively generating results
and assigning weights until convergence is reached with the
results. The pseudocode for the general algorithm is shown
below.

Algorithm 1 Label TAG
1: procedure TAG(data, k)
2: results← majorityVote(data)
3: oldResults← results
4: convergence← false
5: while ! convergence do
6: weights← getWeights(data,results,k)
7: results← getResults(data,weights)
8: if results = oldResults then
9: convergence← true

10: else
11: oldResults← results
12: return results

Weight Assignment
We assign weights to every worker at each of timestep of
their labeling process. We store these weights in a dictio-
nary indexed by worker and task. For each worker, we begin
by sorting all tasks completed by timestep. Then, we com-
pare worker responses against results to generate a binary
accuracy value for each timestep, thus creating an timestep-
indexed array of accuracy values for the worker. We refer to
this array as, A. Now, we iterate across timesteps and calcu-
late the window indices at each timestep. The rule for win-
dow size at timestep t is: ilower = max(0, ceiling(t−k/2))
and iupper = min(n, ceiling(t + k/2)), where n is the
total number of tasks a worker has completed. Then we
create a window, W = [ilower,iupper).This gives us a win-
dow of size k centered around timestep t. It is important to
note that the window is truncated near t = 0 and t = n



to maintain valid indexing in corner cases. See Figure 1
for a visualization of weight assignment. Now, we calcu-
late an average accuracy from array A on this window W ,
such that φ = mean(a[W ]). From this value φ, we com-
pute a weight such that weight = 2φ − 1. By making this
transformation, we can count adversarial accuracies (accu-
racies that are worse than a random guess, φ < .5) nega-
tively. This weight is then stored in the weight dictionary
weightsworker,task = weight.

Figure 1: An example of weights by TAG for each timestep
versus EM assigned weight across a linear learning function
with k = 5.

Result Aggregation
Result aggregation in this method is nearly identical to tradi-
tional EM approaches. For each task, determine all workers
who labeled this item. The equation below signifies how to
assign labels given worker responses, R, and weights,W’.

labeltask = sign(
∑

workers

Rworker,taskW
′
worker,task)

Note, we use W’ locally here for brevity of notation, it is not
to be confused with W used to denote a window elsewhere
in the paper.

Theoretical Validation
Computational Expected Error on Label TAG
Algorithm
In calculating our expected error, we generally define the
window as follows:

W = {n− k

2
, n− k

2
+ 1, ..., n+

k

2
− 1, n+

k

2
}

rounding up to ensure integer values and ensure constant
window size k. In edge cases, we truncate the window such
that indices are within the bounds [0, n) as described above.
Having defined our window W , we calculate our expected
mean absolute error for a window size k, as follows:

MAEk =
1

n

n−1∑
t=0

k∑
i=0

| i
k
− f(t)|P (X = i)

Where f(t) is the worker’s learning function, returning their
true accuracy at time t, i

k is a workers potential accuracy
assigned at timestep t, P (X = i) is the probability of them
receiving that accuracy at that timestep.

We define P (X = i) with a Poisson Binomial distribu-
tion, with the PDF:

P (X = i) =
∑
N∈S

∏
l∈N

f(l)
∏

j∈Nc

1− f(j)

With S as the set of all possible subsets of W of size i, and
N c is the complement on N , or S/N . For example, if W =
{1, 2, 3} and i = 2, S = {{1, 2}, {1, 3}, {2, 3}}. If S =
{1, 2}, Sc = {3}. In words, P (X = i) is the probability that
at a given timestep, the worker will label i labels correctly.

At every timestep, a worker has k+1 possible skill levels
and their true skill level, f(t). The probability they are of
skill level i

k is calculated by P (X = i), and thus we find the
total expected error for a timestep t by subtracting potential
skill from true skill, times the probability of having said po-
tential skill level. We do this for every time step, and average
the total to find mean absolute error.

Note this computation gets very expensive quite quickly.
For a window size > 20, for example, |S| > 105 when
i = 10. While more economical computation methods ex-
ist [1] for finding P (X = i), we find significant decreases
in individual worker accuracy prediction error with window
sizes < 15, and thus we do not need to explore higher k
values.

Bounds on EM Error
The distribution of potential worker accuracy values as-
signed by EM can effectively be calculated by using a win-
dow size of n in the Poisson Binomial distribution. Unfortu-
nately, as previously stated, the Poisson Binomial distribu-
tion becomes intractable at large sets of W. So, we employ
a trick to calculate the lower bound of error on a worker’s
learning function f(t) for a weight assigned by EM. We do
this in order to compare the expected error of TAG at differ-
ent window sizes to the baseline EM.

We motivate the calculation of this lower bound on the er-
ror of EM by knowing that in the best case, EM will choose a
value b* to represent a worker’s accuracy that minimizes the
sum of absolute error to all points in f(t). The true distribu-
tion of possible weights cannot better minimize MAE than
picking worker accuracy value b* with probability p(b*)=1.

To choose the optimal accuracy value b* that minimizes
MAE, we perform a simple optimization process on a related
equation. We find a b value that minimizes MAE as a func-
tion of b by minimizing the Sum of Squared Errors (SSE)
with respect to b. This function is differential and obtains a
minimum at the same value as MAE. The SSE is represented
below:

SSE =

n−1∑
t=0

(f(t)− b)2 (1)

To find the accuracy assignment that minimizes this equa-
tion, b*, we differentiate the function with respect to b and



set this to equal zero.

dSSE

db
=

n−1∑
t=0

−2(f(t)− b) = 2nb− 2

n−1∑
t=0

f(t) (2)

0 = 2nb∗ − 2

n−1∑
t=0

f(t) (3)

b∗ =

∑n−1
t=0 f(t)

n
= f̄ (4)

We see that b* is equal to the mean value of the learning
function on the timestep domain t ∈ [0, n − 1]. We verify
this is a global minimum because the function is convex and
concave up as the second derivative is positive on the whole
domain. This value, b*, minimizes MAE, so EM cannot have
an expected MAE value lower than that computed from b*.
By plugging in b* into MAE, we achieve the closed form
lower bound on expected MAE for EM.

MAE =

n−1∑
t=0

|f(t)− b∗| =
n−1∑
t=0

|f(t)− f̄ | (5)

Evaluation of Window Sizes on Learning Functions
To demonstrate, consider the following example of asse-
ment of error in calculating an individual workers weight.
Let worker i has the following learning function:

f(t) =
1

2
+

1

2

t

100

Assume this worker labels 100 tasks, or in other words,
reaches their skill cap and stops labeling as soon as they do.
We compute the MAE for increasing values of k, as seen in
the table below:

k MAEk

1 .42
2 .30
3 .21
5 .17

10 .11
12 .11
15 .10

From (4), we observe b∗ in this case to be .75, which we can
then plug into (5) to find the lower bound on EM’s MAE to
be .25. With k values ≥ 3 in this table, we show TAG must
have a lower expected MAE than EM. This approach could
be run exhaustively on any learning function to see when,
and at what k values, TAG could better match a worker’s true
accuracy in expectation than EM. For the sake of brevity,
however, we employ this example to show a concrete in-
stance of TAG theoretically outperforming EM in capturing
worker ability and use it to justify proceeding to experimen-
tal validation.

Dataset Generation
Due to the novelty of temporal label aggregation, we were
unable to find a dataset on which to empirically validate

our model. Thus, we synthetically generated data sets which
modeled user improvement over time.

We generated simple data as proof of concept and even-
tually dynamic, realistic data for our experimental valida-
tion. For simple datasets, we selected a number of tasks ns,
a number of workers ls, and a learning function f(t). Every
worker labels every task, and reaches the peak of their skill-
cap at their last timestep. While these datasets do not best
reflect real worker behavior, they represent a hypothetical
near-best-case scenario, useful for demonstrating the value
of TAG.

In our more robust dynamic data sets, we defined some
number of tasks Nd which we wanted to be labeled with
workers reaching their skill caps at Md, and took the fol-
lowing steps to best simulate real worker behavior, based on
prior research and traditional crowdsourcing practices:
• Tasks are assigned to workers randomly, and the number

of tasks an individual worker completes is random.
• Workers will self select out of a task if their accuracy is

too low (high rejection rate) [4]. To achieve this, we lim-
ited the range of worker skill discounts to d ∈ [.7, .9].

• The number of workers is not constant, but the number of
labels per task is.

• Workers share a common learning function with unique
discount factors.

• Workers may continue to work after reaching their skill
cap.

Following these guidelines, we generated datasets with vary-
ing values of Nd and Md. We then created a large number
of such datasets for each learning function, and selected val-
ues of nd and md to enhance accuracy in our assessment of
algorithm accuracy.

Learning Functions
The literature on how humans learn over time is relatively
sparse. Quantifying knowledge is no simple task, though
luckily in binary label aggregation, workers have two op-
tions: right or wrong. Existing literature has provided reason
to believe temporal information proves beneficial in crowd-
work problems, specifically noting that learning ability can
be approximated and accurately bounded [2]. Furthermore,
in some cases, workers have displayed dynamic abilities
suggesting a window based solution may lead to enhanced
prediction accuracy [3]. In some examples, we define a m
as the ”mastery point,” where workers will stop improv-
ing and continue to work at exactly their skill cap. In cases
where m is undefined, m = n, the number of tasks a worker
completes in total. We define a learning function f(t) for a
worker as follows:

f(t) =
1

2
+

discount ∗ g(t)
2

where g(t) is a growth function returning a value x ∈ [0, 1],
increasing to 1 as t→ m and exactly 1 when t >= m.

For baseline comparisons to EM, we tested TAG on a
dataset with no worker skill improvement. For our primary
tests, we assumed worker skill grew linearly, though we also



tested TAG on logarithmic, asymptotic, and sigmoidal skill
growth. Figure 2 displays a example with a linear learning
function and a skill cap.

Figure 2: An individual worker’s skill over time, mastering
the task at t = 25, completing an additional 23 tasks.

Experimental Results
In this section, we compare the accuracy of TAG to EM on
generated data. In our simple datasets, we use 5 workers per
task. As a reminder, dynamic datasets have variable numbers
of workers. This value was chosen as with fewer workers per
task, it becomes more important to accurately gauge the abil-
ity of each worker. We omit SVD and majority vote results
as these aggregation methods tend to perform poorly with-
out large numbers of workers per task and therefore would
not make for a fair comparison. EM is the most similar ag-
gregation algorithm and as such is used as the baseline. Con-
fidence intervals are plotted at the 90% level for both TAG
and EM in all plots.

Simple Data
Here, we analyze our performance on a simple dataset, fol-
lowing a sigmoidal learning function. The function used
here is shown below. In simple datasets, we exclude a mas-
tery point m.

f(t) =
1

2
+

1

2(1 + e−1(t−n
2 ))

with n as the total number of labels per worker. This func-
tion represents a worker who has some stagnant ability, goes
through some period of rapid learning, and settles in to some
higher, stagnant ability. While not representative of most
learning functions, this represents a near best case scenario
for TAG, with a high degree of variance in worker ability
over time. We still make some assumptions of worker abil-
ity, assuming their skill starts at .5, as opposed to starting at
0. While TAG would outperform EM significantly more in
the latter situation, it is unrealistic to have a worker go from
entirely adversarial to entirely cooperative, while being able
to discern a correct label the whole time.

In figure 3, we see the performance of TAG and EM on
a dataset with 50 tasks per worker. We note TAG slightly
outperforms EM at intermediate window sizes, which is in
line with our expectations, where low k values result in large
MAE values from a learning function, and where k values
near the number of tasks per worker results in an algorithm
that closely resembles EM.

We contrast the performance at 50 tasks per worker with a
slower, longer learning period in figure 4. In this situation, a
worker labels 250 tasks, while experiencing a similar learn-
ing function as before. Here, we see that TAG significantly
outperforms EM at intermediate window sizes, with over a
10 point jump in accuracy. It is clear that TAG performs bet-
ter on longer learning periods, which is validated through
MAE calculations.

Figure 3: Sigmoidal learning, 50 tasks per worker

Figure 4: Sigmoidal learning, 250 tasks per worker

Dynamic Data
We move on to datasets generated using more sophisti-
cated methods, which promise to better capture the dynam-



Figure 5: No learning, dynamic dataset generation.

ics of real-world label aggregation. These datasets leverage
all methods outlined in the data generation section to create
datasets that best mimic real crowdsourcing data.

The first set we try against has workers experience no
learning, where we would expect our model to underper-
form against EM. Per our expectations, in figure 5 we see
that TAG does underperform when compared to EM, but that
this difference is only slight. Indeed, at intermediate window
sizes of 100 and 200, TAG achieves near parity with EM.
This is promising as it signifies that even in the worst case
for TAG, where worker abilities truly are static, there is only
a marginal performance hit.

Moving on to datasets drawn from workers who expe-
rience learning, we witness that TAG again outperforms
EM. In figure 6, data is generated with workers reaching a
skill cap at t = 400 and continuing to work past then dy-
namically, as laid out previously. We again witness signifi-
cant outperformance of EM at intermediate window sizes of
k = 50, 100, and 200. This result is incredibly promising
in that it evidences the ability of TAG to be robust in more
realistic settings of learning.

Discussion
With Label TAG, we set out to find an algorithm that can
more incisively capture worker ability in cases where this
shifts over time. Through theoretical validation, we show
how to calculate in what situations TAG will better be able to
capture true worker ability in expectation compared to EM,
and we provide an example to illustrate our case. Through
experimental validation, we show TAG is robust in cases of
non-learning and outperforms baselines in situations where
learning occurs. We also find that TAG performs better in
situations of longer, slower learning.

With these findings, we conclude that implementing TAG
can squeeze extra performance out of label aggregation in
many situations. Specifically, TAG will likely outperform
when aggregation processes have a low number of workers
per task and when there is reason to believe worker ability is

Figure 6: Linear learning, dynamic dataset generation.

dynamic over time. These results may prove especially help-
ful when adversarial gaming occurs. If, say, a worker at any
point alternates from benevolent and accurate to adversar-
ial (intentionally labelling incorrectly), we have evidence to
suggest that TAG could pick up on this change to generate
considerably higher overall accuracy.

TAG is a parameterized algorithm, however, unlike other
models, which can have implications on its performance.
From our figures, we observe the performance of TAG to
be roughly parabolic in terms of k. The iterative nature of an
expectation-maximization based algorithm makes it impos-
sible to precisely solve an optimization problem in terms of
k to maximize accuracy. In cases of a known learning func-
tion, our theoretical model of capturing worker accuracy can
be tried at different k values to find an optimal k. In cases of
unknown learning functions, however, we qualitatively put
forth rules for choosing an optimal k value. We find inter-
mediate k values tend to work best, at roughly or just below
1
2 of the total length of worker period n. These values seem
to best solve the tradeoff of capturing trends in learning over
time and making a tighter distribution of possible outcomes
at a given timestep. These values also produce the most ro-
bust results when workers do not, in fact, experience learn-
ing. To precisely choose a k value requires an optimization
over various parameters that define the dataset, including the
learning function, the number of total tasks, the number of
workers, and the skill cap.

Having made these qualitative claims, this is an area that
would benefit greatly from future research. Studies on true
learning functions for various tasks will enable the use of our
computational tool to minimize MAE. This work would also
benefit from research on algorithms to search for the best k
in the high-dimensional space that characterizes a given ag-
gregation problem. Ultimately, however, TAG is shown to
be a robust, performant, and useful algorithm in many cases,
even when using a heuristic for k. Through this work, we
propose an effective algorithm that models aggregation in
situations of dynamic worker abilities over time and high-
light the potential for future work in this space.
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